Homework Set 6

(sect 3.1 - 3.3)

For questions 1 and 2, compute the following determinants, using either cofactor expansion along the first row or the diagonal trick for computing the determinant for 3×3 matrices.

1.	0	5	1
	4	-3	0
	2	4	1
2.	1	3	5
	2	1	1
	3	4	2

For questions 3 and 4, compute the following determinants by cofactor expansion. At each step, choose the row or column that will require the least number of computations.

$$3. \begin{vmatrix} 1 & -2 & 5 & 2 \\ 0 & 0 & 3 & 0 \\ 2 & -6 & -7 & 5 \\ 5 & 0 & 4 & 4 \end{vmatrix}$$

	1 4	7	7	2	0
	0	3	9	6	-1
4.	0	0	2	3	8
	0	0	0	7	11
	10	0	0	0	-5

5. Let
$$A = \begin{bmatrix} 2 & 3 \\ 1 & 5 \end{bmatrix}$$
. Write 3A. Is $det(3A) = 3 \cdot det(A)$?

6. Find the determinant by row reducing to echelon form.

]	Find	the de	termi	nant	by row	r
1	1	3	-1	0	-21	
	0	2	-4	-1	-6	
	-2	-6	2	3	9	
	3	7	-3	8	-7	
	3	5	5	2	7 I	

7. Find the determinant by combining the methods of row reducing and cofactor expansion.

2	5	-3	-1
3	0	1	-3
-6	0	-4	9
4	10	-4	-1

8. Find the determinants below using the fact: $\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = 7$

a.
$$\begin{vmatrix} g & h & i \\ 2d & 2e & 2f \\ 3a & 3b & 3c \end{vmatrix}$$
b. $\begin{vmatrix} a & b & c \\ d-2a & e-2b & f-2c \\ 5g & 5h & 5i \end{vmatrix}$

- 9. Let A and B be 4×4 matrices, with det(A) = -1 and det(b) = 2. Compute:
 - a. det(AB)
 - b. $det(B^5)$
 - c. *det*(2*A*)
 - d. $det(A^T A)$
 - e. $det(B^{-1}AB)$
- 10. Let $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. Show that det(A + B) = det(A) + det(B) if and only if a + d = 0.

- 11. Use Cramer's Rule to compute the solution of the linear system.
- $\begin{cases} 2x_1 + x_2 + x_3 = 4\\ -x_1 + 2x_3 = 2\\ 3x_1 + x_2 + 3x_3 = -2 \end{cases}$

- 12. Use Cramer's Rule to determine the values of the parameter s for which the linear system has a unique solution. Describe this solution(s).
- $\begin{cases} 3sx_1 5x_2 = 3\\ 9x_1 + 5sx_2 = 2 \end{cases}$

For questions 13 and 14, find the inverse of the given matrix by computing first computing the adjugate of the matrix.

	[3	6	7]
13.	0	2	1
	2	3	4

	[1	2	4]
14.	0	-3	1
	Lo	0	3]

15. Find the volume of the parallelepiped with one vertex at the origin and the adjacent vertices at (1,4,0), (-2,-5,2), and (-1,2,-1).